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Introduction Methodology Results Discussion Future work

Introduction:
• Energy budget of the high-latitude I-T
• Models of energy transfer from Magnetosphere
• Meso-scale drivers
• Wave contribution to I-T energy budget
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Introduction I: Energy budget of the high-latitude I-T
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• Solar EUV is the 
dominant energy source 
for the I-T system.

• Joule heating (σpE2) and 
particle precipitation are 
important during periods 
of high solar activity.

Electromagnetic energy from 
the magnetosphere (source) à
Joule heating at the I-T (sink)
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• Traditionally, conductivity and electric fields are 
estimated through empirical models. 

• Current models can not resolve the meso-scale 
structures but significant work is ongoing*.

Introduction II: Estimating the Energy Transfer from 
Magnetosphere 
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same as the large-scale E-fields

Not resolving meso-scale electric field 
variability (temporal + spatial) à
underestimated Joule Heating

*[Codrescu et al. 2008; Deng et al. 2009; Matsuo & Richmond 2008; Zhu et al. 2018].

Cosgrove et al., 2009
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Ø Direct Current (DC): Quasi-static (>15 minutes), time-dependent 
terms neglected, large-scale (>250 km), estimated with empirical 
models

Ø Alternating Current (AC): Dynamic (< 15 minutes), allows for wave 
solutions, meso- (250-100 km) and small-scale (<100 km)

Spatial scale between 100-250 km, temporal scale below 15 minutes
Introduction III: Meso-scale drivers
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𝐵 = 𝐵! + $𝐵

ACDC

𝐸 = 𝐸! + $𝐸
Energy deposition from 
magnetosphere = 𝑄! + 𝑄"

Verkhoglyadova et al., 2018 and references therein
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Heating by Alfvén waves 
(depending on the 
frequency range and 
propagation mode): 
Verkhoglyadova et al., 
2018;  Lotko et al., 2018)

Observational and theoretical studies
Introduction IV: Wave contribution to I-T Energy Budget
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AC field estimates taken from 
observations (Alebono, FAST) 𝝈𝑷

Lotko and Zhang, 2019

Brinkm
an et al., 2016

Hatch et al., 2017
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Objectives:
→ Quantify dynamic IT driving 

using ISR measurements
→ Adapt a first-principles model 

(GITM) to dynamical driving
→ Quantify impacts on the 

regional I-T system

Questions:
✻ What is the importance of 

meso-scale structures on I-T 
energy budget?

✻ What are the characteristics of 
meso-scale energy deposition?

✻ What role do meso-scale 
structures play in M-I-T 
coupling?

Can we quantify the distinct effects of the meso-scale 
structures on the I-T system?

4/23/19 CSP BU Seminar 7
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Outline for the Talk
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Introduction Methodology Results Discussion Future work

Methodology:
• Global Ionosphere Thermosphere Model 

(GITM)
• Incoherent Scatter Radar Measurements
• Determination of the Electric Potentials
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• Solves Navier-Stokes equations on 3D, altitude based non-uniform grid, 
assuming non-hydrostatic solution

• Input: Solar wind plasma parameters, IMF vector measurements, F10.7
– Convection electric field models: AMIE, Weimer, Heelis, RIM
– Particle precipitation models: Newell, OvationPrime, OvationSME, RIM

• Heating: EUV, Joule and chemical heating
• Cooling: NO and O2 radiative cooling
• Species are:

– Neutrals: O, O2, N(2D), N(2P), N(4S), N2, NO, H and He
– Ions: O+(4S), O+(2D), O+(2P), O+2, N+, N+2, NO+, H+ and He+

• Output: Plasma and neutral density, temperature, ion and electron velocity, 
neutral winds

The University of Michigan Global Ionosphere-Thermosphere Model
Methodology I: Model
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• Focusing on the interval between 0628 
UT-0730 UT on 2 March 2017.

• PFISR aiding the ISINGLASS experiment 
with 15 beams operating [Lynch et al.]

• LOS velocity measurements were used to 
derive Electric fields on a 2D grid.

• Temporal resolution [66 seconds]
• Spatial resolution [0.05° in latitude and 

0.3° in longitude, 100 km]
• Many short-lived structures during the 

period

Poker Flat Incoherent Scatter Radar Observations
Methodology II: Measurements

4/23/19 CSP BU Seminar 10



j p l . n a s a . g o v

PI: Kristina Lynch – Dartmouth College
Robert Clayton (Dartmouth), Matt Zettergren (ERAU), Meghan
Burleigh (ERAU-UMich), Mark Conde (UAF), Guy Grubbs (GSFC),
Don Hampton (UAF), David Hysell (Cornell), Marc Lessard (UNH),
Robert Michell (UMD), Ashton Reimer (SRI), T. Maximillian Roberts
(Dartmouth-JPL), Marilia Samara (GSFC), Roger Varney (SRI)

Aim: Sampling multiple locations 
simultaneously in the auroral ionosphere to 
take gradient measurements of plasma 
parameters.

Ionospheric Structuring: In Situ and 
Groundbased Low Altitude Studies 
(ISINGLASS) Experiment

4/23/19 CSP BU Seminar 11Credits: NASA/Terry Zaperach

Clayton et al., 2019a, 2019b, JGR
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Calculating the Electric Potentials
Methodology III: Combining the model and measurements
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Relationship between electric potentials and 
electric fields:

∇Φ = 𝑬𝒙 + 𝑬𝒚

∇Φ = 𝒆𝒙
𝝏Φ
𝝏𝒙

+ 𝒆𝒚
𝝏Φ
𝝏𝒚

Integration in magnetic coordinates:

𝜙# = +
#!

#"
𝐸# 𝑑𝑥 𝜙$ = +

$!

$"
𝐸$ 𝑑𝑦

Forward Euler method in integration leads 
to best results.

Forward Euler:
𝜙#%,' = 𝜙#%(),' + 𝐸#%,'𝑑𝑥
𝜙$%,' = 𝜙$%,'() + 𝐸$%,'𝑑𝑦

Requirements:
1. Unconstrained problem
2. Should preserve the Efield

features in both coordinates 
(potential is a scalar quantity)

3. Should yield to low errors 
with Central Differencing 
(GITM)

4. Should convert the 
measurements from non-
uniform to uniform grid

5. Should be computationally 
affordable
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As the grid size decreases, more features are captured. 
But how does the computational cost change?

0.75° by 0.75° 0.35° by 0.35°

(a)     (b)  (c)        (d)

PFISR Measurements 1° by 1°

Downsampling the data resolution
Methodology III: Combining the model and measurements
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• Computational cost increases exponentially.
• Grid resolution was chosen as 0.75°.

Determining the grid resolution
Methodology III: Combining the model and measurements
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14792 14792

3200 3200
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• Gaussian filter à
Smoothing the boundaries

• Nearest Neighbor 
Interpolation à
Transforming to GEO grid

Requirements:
ü Constrained the problem 

with Weimer potentials
ü Two potentials to preserve 

the features in X and Y
ü ~%1 error
ü Uniform grid
ü Computationally affordable

Bringing together the large-scale and the meso-scale potentials
Methodology III: Combining the model and measurements

4/23/19 CSP BU Seminar 15



j p l . n a s a . g o v

Outline for the Talk
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Introduction Methodology Results Discussion Future work

Results:
• Measurement errors
• Validation of the model results
• Sources of Meso-Scale Drivers
• Effects of Meso-Scale Drivers
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• Certain measurements are more 
reliable

• Errors guide validation efforts

Understanding the constraints of data
Results I: Validation
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450 km

CEDAR Session on “Reconciling 
observations and models of high-latitude IT 
processes” at 20 June 2019, Thursday am.
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• Largest errors 
along Beams 
5, 6, 7, 9 and 
10

• Electron 
density 
enhancement 
between 175-
300 km

Electron Density along the Beams at 0630 UT
Results I: Validation

4/23/19 CSP BU Seminar 18

o Weimer simulations
o PFISR+Weimer simulations
o PFISR measurements
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Electron Temperature along the Beams at 0630 UT
Results I: Validation
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o Weimer simulations
o PFISR+Weimer simulations
o PFISR measurements

• Largest errors 
along Beams 
5, 6, 7, 8, 9, 
10, 12, 13 and 
15

• Small electron 
temperature 
drop above 
200 km.
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Ion Temperature along the Beams at 0630 UT
Results I: Validation
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o Weimer simulations
o PFISR+Weimer simulations
o PFISR measurements

• Largest errors 
along Beams 
5, 6, 7, 9 and 
10

• Significant ion 
temperature 
enhancement 
between 120-
300 km. 
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OMNI Solar Wind and IMF Data • Multiple IMF BZ reversals
• High-speed solar wind
• Recovery phase

The large-scale drivers
Results II: Sources of Meso-Scale Drivers
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Weimer Potentials: SuperDARN Potentials:

No significant response Flow enhancements
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Themis-E recorded Earthward flow 
enhancements and slight BZ reversals 
indicating possible magnetotail activity.

Results II: Sources of Meso-Scale Drivers

4/23/19 CSP BU Seminar 22
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Measured vs Modeled Electric Fields between 0655-0725 UT 
Results II: Sources of Meso-Scale Drivers
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• Overall electron density 
increases compared to 
Weimer driven model.

• Measured 
enhancements around 
150 km not captured 
well.

• Vertical profiles of 
measured electron 
densities are very 
dynamic.

• Meso-scale particle 
precipitation is not 
included.

Electron density variation between 0655-0725 UT 
Results III: Effects of Meso-Scale Drivers
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o Weimer simulations
o PFISR+Weimer simulations
o PFISR measurements
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• Electron 
temperature is lower 
in the MS driven 
GITM simulations.

• Not enough cooling 
in electron 
temperature.

• No electron flux or 
energy input in 
meso-scale was 
included in the 
model.

Electron temperature variation between 0655-0725 UT 
Results III: Effects of Meso-Scale Drivers
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o Weimer simulations
o PFISR+Weimer simulations
o PFISR measurements
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Ion temperature variation between 0655-0725 UT 
Results III: Effects of Meso-Scale Drivers
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• Ion temperature is more 
sensitive to Efield
variability than electron 
temperature and 
density.

• More wave-like 
structures appear in the 
vertical profiles of ion 
temperature.

• Ion cooling 
mechanisms need 
improvement.

• Electron precipitation 
can lead to drops in ion 
temperature.

o Weimer simulations
o PFISR+Weimer simulations
o PFISR measurements
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Introduction Methodology Results Discussion Future work

Discussion:
• Role of particle precipitation
• Global effects of the meso-scale variability
• Summary of results
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• Constant auroral arc over Alaska during the period
• Multiple impulsive brightening over Alaska, 1 W/m2 in Venetia ASKI data*

• No significant change in OvationPrime

Discussion I: Role of particle precipitation
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*courtesy of Guy Grubbs and Matt Zettergren



j p l . n a s a . g o v

• Two heating channels form, 
southward (westward 
convection) and northward 
(eastward convection) of 
70°.

• Highest enhancements are 
around 175 km and above 
400 km.

• Up to 1000 K enhancement.
• Latitudinally limited, with 

short-lived (1 minute) effects 
over 16° (~1800km). 

Meridional extent of ion temperature variation 
Discussion II: Global effects of the meso-scale variability
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Zonal extent of ion temperature variation 
Discussion II: Global effects of the meso-scale variability
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• Heating mostly due to 
westward convection flows, 

• Highest enhancements are 
centered around 150 km and 
300 km.

• Longitudinal extent 10°
(~935 km) but not limited.

• Shows short-lived 
enhancements (1 minute).

• Wave-like structures along 
the vertical profile.

065.0
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✻ What is the importance of meso-scale structures on I-T energy budget?
§ Up to %40 enhancement in electron density
§ Up to %100 enhancement in ion temperature 

✻ What are the characteristics of meso-scale energy deposition?
§ Mostly in the F2 region
§ Short-lived (1-2 minutes) based on the driver
§ Wave like structures in vertical temperature profiles

✻ What role do meso-scale structures play in M-I-T coupling?
§ Geomagnetic activity: Prolonged IMF BZ period 
§ Earthward flow enhancements in magnetotail
§ BX reversals in magnetotail
§ Impulsive aurora

Discussion III: Summary of Results
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Outline for the Talk
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Introduction Methodology Results Discussion Future work

Future work:
• Including particle precipitation
• Improving model capabilities
• Quantifying uncertainties in the model
• More event studies with different drivers
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Thank you.
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BACK-UP SLIDES
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E-field variability affects the 
Joule heating through:

– Ion convection patterns
– Neutral winds
– Electron density 

profiles
– Secondary processes

Introduction I: The energy deposition from the Magnetosphere to the 
I-T system
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Electromagnetic energy transfer rate : 𝑱. 𝑬 = 𝑱. 𝐄 + 𝑼×𝑩 + 𝑼. (𝑱×𝑩)

Adapted from Deng and Ridley, 2007

Joule heating

Work done on 
neutrals by ion 

drag force
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Measured vs Modeled Electric Fields between 0655-0725 UT 
Results II: Sources of Meso-Scale Drivers
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Spatial and temporal variability captured.
Efield is directed northwards unlike Weimer fields.

Slight enhancement at the upper boundary
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• Overall electron density 
increases compared to 
Weimer driven model.

• Measured 
enhancements around 
150 km not captured 
well.

• Vertical profiles of 
measured electron 
densities are very 
dynamic.

• Meso-scale particle 
precipitation is not 
included.

Electron density variation between 0655-0725 UT 
Results III: Effects of Meso-Scale Drivers
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o Weimer simulations
o PFISR+Weimer simulations
o PFISR measurements
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• Electron 
temperature is lower 
in the MS driven 
GITM simulations.

• Not enough cooling 
in electron 
temperature.

• No electron flux or 
energy input in 
meso-scale was 
included in the 
model.

Electron temperature variation between 0655-0725 UT 
Results III: Effects of Meso-Scale Drivers
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o Weimer simulations
o PFISR+Weimer simulations
o PFISR measurements
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Ion temperature variation between 0655-0725 UT 
Results III: Effects of Meso-Scale Drivers

4/23/19 CSP BU Seminar 40

• Ion temperature is more 
sensitive to Efield
variability than electron 
temperature and 
density.

• More wave-like 
structures appear in the 
vertical profiles of ion 
temperature.

• Ion cooling 
mechanisms need 
improvement.

• Electron precipitation 
can lead to drops in ion 
temperature.

o Weimer simulations
o PFISR+Weimer simulations
o PFISR measurements


